度小滿開源國(guó)內(nèi)首個(gè)千億參數(shù)金融大模型“軒轅”

度小滿正式開源國(guó)內(nèi)首個(gè)千億級(jí)中文金融大模型——“軒轅”。

近日,度小滿正式開源國(guó)內(nèi)首個(gè)千億級(jí)中文金融大模型——“軒轅”。軒轅大模型是在1760億參數(shù)的Bloom大模型基礎(chǔ)上訓(xùn)練而來,在金融名詞理解、金融市場(chǎng)評(píng)論、金融數(shù)據(jù)分析和金融新聞理解等任務(wù)上,效果相較于通用大模型大幅提升,表現(xiàn)出明顯的金融領(lǐng)域優(yōu)勢(shì)。

在金融場(chǎng)景中的任務(wù)評(píng)測(cè)中,軒轅全面超越了市場(chǎng)上的主流開源大模型,贏得了150次回答中63.33%的勝率,充分凸顯了其在金融領(lǐng)域的顯著優(yōu)勢(shì)。在通用能力評(píng)測(cè)中,軒轅有10.2%的任務(wù)表現(xiàn)超越ChatGPT 3.5,61.22%的任務(wù)表現(xiàn)與之持平,涉及數(shù)學(xué)計(jì)算、場(chǎng)景寫作、邏輯推理、文本摘要等13個(gè)主要維度。

為了提升軒轅大模型對(duì)金融領(lǐng)域問題的理解能力,度小滿將自身業(yè)務(wù)中積累的金融領(lǐng)域的千億tokens的中文預(yù)訓(xùn)練數(shù)據(jù)集用來訓(xùn)練模型。該數(shù)據(jù)集涵蓋了金融研報(bào)、股票、基金、銀行、保險(xiǎn)等各個(gè)方向的專業(yè)知識(shí)。度小滿表示,經(jīng)過清洗和標(biāo)注的高質(zhì)量數(shù)據(jù)集,不僅在通用性方面與ChatGPT達(dá)到持平成為可能,且顯著提升了模型在金融垂直領(lǐng)域的性能。

BLOOM (Big Science Language Open-science Open-access Multilingual)是2021年由 1000 多名志愿研究人員在一個(gè)名為“大科學(xué) BigScience”的項(xiàng)目中創(chuàng)建,2022年 7 月 12 日正式發(fā)布。BLOOM 擁有 1760 億個(gè)參數(shù)(決定輸入數(shù)據(jù)如何轉(zhuǎn)換為輸出內(nèi)容的變量),稍多于擁有 1750 億個(gè)參數(shù)的 GPT-3。BLOOM擁有1.61TB文本,包含46種自然語言和13種編程語言。相比Meta發(fā)布的130億參數(shù)的LLaMA(Large Language Model Meta AI)模型,Bloom參數(shù)量更占優(yōu)勢(shì)。

目前,千億級(jí)的軒轅模型已可以在Huggingface中申請(qǐng)下載,面向所有金融機(jī)構(gòu)開放。 

度小滿CTO許冬亮表示,軒轅大模型是經(jīng)度小滿業(yè)務(wù)場(chǎng)景中積累的金融數(shù)據(jù)訓(xùn)練而來的,對(duì)金融相關(guān)問題的理解比通用大模型更有優(yōu)勢(shì)。我們把大模型能力開放給金融機(jī)構(gòu),有利于推動(dòng)大模型在金融行業(yè)的應(yīng)用,降低大模型的應(yīng)用門檻,提升金融行業(yè)智能化水平。

作為AI新基建,大模型在金融及各個(gè)行業(yè)有著廣泛的應(yīng)用場(chǎng)景。軒轅大模型開源后,對(duì)金融機(jī)構(gòu)有何意義?

許冬亮認(rèn)為,生成式大模型在內(nèi)容生成與創(chuàng)作、信息摘要與總結(jié)、知識(shí)理解與問答、自然交互與對(duì)話等方面具備非常出色的能力,在金融場(chǎng)景中會(huì)有廣泛的應(yīng)用。在前臺(tái),生成式大模型將大幅提升客戶經(jīng)理的專業(yè)水平和服務(wù)能力,大幅降低客戶經(jīng)理的運(yùn)營(yíng)成本,讓每個(gè)人都擁有24小時(shí)在線的專業(yè)客戶經(jīng)理成為可能。出色的內(nèi)容生成能力也將引發(fā)營(yíng)銷內(nèi)容生產(chǎn)能力的大幅提升。在中臺(tái),生成式大模型有機(jī)會(huì)改變企業(yè)內(nèi)知識(shí)獲取、內(nèi)容創(chuàng)作、會(huì)議與溝通、代碼開發(fā)與測(cè)試的方式,進(jìn)而大幅提升企業(yè)內(nèi)部辦公效率,甚至引發(fā)研發(fā)測(cè)試模式變革,全方位的提升金融企業(yè)內(nèi)部運(yùn)營(yíng)效率。在后臺(tái),大模型將成為智能科技底座的標(biāo)配,大幅降低智能技術(shù)應(yīng)用的門檻,只需少量標(biāo)注數(shù)據(jù)甚至無需調(diào)整就可以讓智能技術(shù)覆蓋廣泛的場(chǎng)景。

度小滿依托于百度人工智能技術(shù),已經(jīng)開展了一系列基于大模型的應(yīng)用。以風(fēng)險(xiǎn)管理為例,度小滿已經(jīng)將大型語言模型LLM應(yīng)用在互聯(lián)網(wǎng)文本數(shù)據(jù)、征信報(bào)告的解讀上,通過用文本數(shù)據(jù)構(gòu)造的預(yù)訓(xùn)練模型以及AI算法,能夠?qū)⒄餍艌?bào)告解讀出40萬維的風(fēng)險(xiǎn)變量,更好的識(shí)別小微企業(yè)主的信貸風(fēng)險(xiǎn)。今年5月份,這一工程榮獲了 “吳文俊人工智能科學(xué)技術(shù)獎(jiǎng)”。今年2月份,百度基于文心大模型技術(shù)推出的生成式對(duì)話產(chǎn)品“文心一言”(英文名:ERNIE Bot)開放生態(tài)合作,度小滿成為首家接入的金融科技公司。

未經(jīng)正式授權(quán)嚴(yán)禁轉(zhuǎn)載本文,侵權(quán)必究。

度小滿

2.7k
  • 度小滿在西安成立新公司,注冊(cè)資本5億
  • 度小滿CEO朱光:推理大模型在金融領(lǐng)域的應(yīng)用將從外圍場(chǎng)景深入到核心業(yè)務(wù)

評(píng)論

暫無評(píng)論哦,快來評(píng)價(jià)一下吧!

度小滿開源國(guó)內(nèi)首個(gè)千億參數(shù)金融大模型“軒轅”

度小滿正式開源國(guó)內(nèi)首個(gè)千億級(jí)中文金融大模型——“軒轅”。

近日,度小滿正式開源國(guó)內(nèi)首個(gè)千億級(jí)中文金融大模型——“軒轅”。軒轅大模型是在1760億參數(shù)的Bloom大模型基礎(chǔ)上訓(xùn)練而來,在金融名詞理解、金融市場(chǎng)評(píng)論、金融數(shù)據(jù)分析和金融新聞理解等任務(wù)上,效果相較于通用大模型大幅提升,表現(xiàn)出明顯的金融領(lǐng)域優(yōu)勢(shì)。

在金融場(chǎng)景中的任務(wù)評(píng)測(cè)中,軒轅全面超越了市場(chǎng)上的主流開源大模型,贏得了150次回答中63.33%的勝率,充分凸顯了其在金融領(lǐng)域的顯著優(yōu)勢(shì)。在通用能力評(píng)測(cè)中,軒轅有10.2%的任務(wù)表現(xiàn)超越ChatGPT 3.5,61.22%的任務(wù)表現(xiàn)與之持平,涉及數(shù)學(xué)計(jì)算、場(chǎng)景寫作、邏輯推理、文本摘要等13個(gè)主要維度。

為了提升軒轅大模型對(duì)金融領(lǐng)域問題的理解能力,度小滿將自身業(yè)務(wù)中積累的金融領(lǐng)域的千億tokens的中文預(yù)訓(xùn)練數(shù)據(jù)集用來訓(xùn)練模型。該數(shù)據(jù)集涵蓋了金融研報(bào)、股票、基金、銀行、保險(xiǎn)等各個(gè)方向的專業(yè)知識(shí)。度小滿表示,經(jīng)過清洗和標(biāo)注的高質(zhì)量數(shù)據(jù)集,不僅在通用性方面與ChatGPT達(dá)到持平成為可能,且顯著提升了模型在金融垂直領(lǐng)域的性能。

BLOOM (Big Science Language Open-science Open-access Multilingual)是2021年由 1000 多名志愿研究人員在一個(gè)名為“大科學(xué) BigScience”的項(xiàng)目中創(chuàng)建,2022年 7 月 12 日正式發(fā)布。BLOOM 擁有 1760 億個(gè)參數(shù)(決定輸入數(shù)據(jù)如何轉(zhuǎn)換為輸出內(nèi)容的變量),稍多于擁有 1750 億個(gè)參數(shù)的 GPT-3。BLOOM擁有1.61TB文本,包含46種自然語言和13種編程語言。相比Meta發(fā)布的130億參數(shù)的LLaMA(Large Language Model Meta AI)模型,Bloom參數(shù)量更占優(yōu)勢(shì)。

目前,千億級(jí)的軒轅模型已可以在Huggingface中申請(qǐng)下載,面向所有金融機(jī)構(gòu)開放。 

度小滿CTO許冬亮表示,軒轅大模型是經(jīng)度小滿業(yè)務(wù)場(chǎng)景中積累的金融數(shù)據(jù)訓(xùn)練而來的,對(duì)金融相關(guān)問題的理解比通用大模型更有優(yōu)勢(shì)。我們把大模型能力開放給金融機(jī)構(gòu),有利于推動(dòng)大模型在金融行業(yè)的應(yīng)用,降低大模型的應(yīng)用門檻,提升金融行業(yè)智能化水平。

作為AI新基建,大模型在金融及各個(gè)行業(yè)有著廣泛的應(yīng)用場(chǎng)景。軒轅大模型開源后,對(duì)金融機(jī)構(gòu)有何意義?

許冬亮認(rèn)為,生成式大模型在內(nèi)容生成與創(chuàng)作、信息摘要與總結(jié)、知識(shí)理解與問答、自然交互與對(duì)話等方面具備非常出色的能力,在金融場(chǎng)景中會(huì)有廣泛的應(yīng)用。在前臺(tái),生成式大模型將大幅提升客戶經(jīng)理的專業(yè)水平和服務(wù)能力,大幅降低客戶經(jīng)理的運(yùn)營(yíng)成本,讓每個(gè)人都擁有24小時(shí)在線的專業(yè)客戶經(jīng)理成為可能。出色的內(nèi)容生成能力也將引發(fā)營(yíng)銷內(nèi)容生產(chǎn)能力的大幅提升。在中臺(tái),生成式大模型有機(jī)會(huì)改變企業(yè)內(nèi)知識(shí)獲取、內(nèi)容創(chuàng)作、會(huì)議與溝通、代碼開發(fā)與測(cè)試的方式,進(jìn)而大幅提升企業(yè)內(nèi)部辦公效率,甚至引發(fā)研發(fā)測(cè)試模式變革,全方位的提升金融企業(yè)內(nèi)部運(yùn)營(yíng)效率。在后臺(tái),大模型將成為智能科技底座的標(biāo)配,大幅降低智能技術(shù)應(yīng)用的門檻,只需少量標(biāo)注數(shù)據(jù)甚至無需調(diào)整就可以讓智能技術(shù)覆蓋廣泛的場(chǎng)景。

度小滿依托于百度人工智能技術(shù),已經(jīng)開展了一系列基于大模型的應(yīng)用。以風(fēng)險(xiǎn)管理為例,度小滿已經(jīng)將大型語言模型LLM應(yīng)用在互聯(lián)網(wǎng)文本數(shù)據(jù)、征信報(bào)告的解讀上,通過用文本數(shù)據(jù)構(gòu)造的預(yù)訓(xùn)練模型以及AI算法,能夠?qū)⒄餍艌?bào)告解讀出40萬維的風(fēng)險(xiǎn)變量,更好的識(shí)別小微企業(yè)主的信貸風(fēng)險(xiǎn)。今年5月份,這一工程榮獲了 “吳文俊人工智能科學(xué)技術(shù)獎(jiǎng)”。今年2月份,百度基于文心大模型技術(shù)推出的生成式對(duì)話產(chǎn)品“文心一言”(英文名:ERNIE Bot)開放生態(tài)合作,度小滿成為首家接入的金融科技公司。

未經(jīng)正式授權(quán)嚴(yán)禁轉(zhuǎn)載本文,侵權(quán)必究。