正在閱讀:

GPT-5要來了,AI行業(yè)會發(fā)生哪些劇變?

掃一掃下載界面新聞APP

GPT-5要來了,AI行業(yè)會發(fā)生哪些劇變?

一個通用性更強的GPT-5,對人類而言,既是生產(chǎn)力進步的福音,但同時也是行業(yè)大地震的前奏。

圖片來源:界面新聞 范劍磊

文|阿爾法工場

從chatGPT問世至今,AI就在以月為單位飛速進化著,其模型之多,迭代之快,讓很多人不不禁驚覺:人類似乎真的站在了AGI大門的邊緣。

而最近,美國專利商標局 (USPTO) 披露的一份文件顯示:OpenAI于7月18日提交了「GPT-5」的商標申請。并且已經(jīng)被接收。

USPTO 文件截圖

盡管在今年上半年,各個AI專家、學者已經(jīng)多次聯(lián)合發(fā)表公開信,呼吁人們重視生成式 AI 的潛在風險,而OpenAI當時也宣布短期內(nèi)不會有訓練GPT-5的計劃。

然而,科技的誘惑,終究還是讓人類打破了禁忌的邊界。

在這次披露的申請書中,OpenAI提到,尚未發(fā)布的GPT-5將具備眾多GPT-4所沒有的能力,而且?guī)缀趺恳豁椂紕χ窤GI。

USPTO 文件截圖

那么,這樣的改變,對AI和人類而言,又意味著什么?

今天,本文就將嘗試從OpenAI的申請文件中披露的有限信息,對GPT-5可能的功能、變化,及所造成的影響,進行一番簡單的剖析。

01 通往AGI之路

在此次披露的文件中,OpenAI最先提到的一個變化,就是多模態(tài)功能的加強。

具體來說,GPT-5 的功能包括把文本或語音從一種語言翻譯成另一種語言、語音識別、生成文本和語音等。

雖然在現(xiàn)在的GPT-4中,用戶同樣可以實現(xiàn)不同語種間的翻譯,但既然翻譯功能在這里被單獨挑出來,想必是重新優(yōu)化過了。

那OpenAI為何會如此突出GPT-5的翻譯能力?

這或許是因為,GPT走向通用的前提之一,就是盡可能縮小不同語言使用大模型的成本差距。

此前,牛津大學的研究成果顯示,由于 OpenAI 等服務所采用的服務器成本衡量,和計費的方式的不同,英語輸入和輸出的費用要比其他語言低得多。

其中簡體中文的費用大約是英語的兩倍,西班牙語是英語的 1.5 倍,而緬甸的撣語則是英語的 15 倍。

因為像中文這樣的語言有著不同、更復雜的結(jié)構(gòu),導致它們需要更高的詞元化率。

例如,根據(jù) OpenAI 的 GPT3 分詞器 ,“你的愛意(your affection)” 的詞元,在英語中只需要兩個詞元,但在簡體中文中需要八個詞元。

這意味著,除了英語之外的其他語言,使用和訓練模型要貴得多。

而一旦翻越了“語言障礙”這道檻,無疑會直接地掃清橫亙在GPT面前的這條通用性障礙。

除此之外,文件中突出的語音識別功能,看似只是一個不起眼的改動,但從某種程度上說,這也是OpenAI對GPT-5在通往AGI的道路上鋪下的又一塊路磚。

眾所周知,在今后的大模型發(fā)展方向上,模型變得邊緣化、終端化,已經(jīng)成了一個愈發(fā)明顯的趨勢。

自從今年7月,高通發(fā)布了能在手機上運行的10億參數(shù)大模型后,榮耀、蘋果等廠商,也相繼宣布要推出自身的“大模型”手機。

以手機為起點,將來的AI數(shù)據(jù),將會越來越多地在攝像頭、傳感器、自動駕駛等終端側(cè)進行處理。

而在這樣的應用場景中,語音識別無疑更便捷、高效。

例如,AI語言模型可以讓駕駛員可以通過語音控制車輛行駛。將駕駛員的語音指令轉(zhuǎn)化為可執(zhí)行的指令,例如啟動、停止、加速、剎車等操作。

而類似于SIri那樣存在于手機系統(tǒng)中的智能助手,也會優(yōu)先考慮通過語音指令來進行控制。

由此可見,語音識別并非只是錦上添花,而是GPT-5進入終端側(cè)的“標配”,

而通過在這一個個終端設備的下沉,GPT-5也將由此獲得更多邊緣化的、非語言的數(shù)據(jù)結(jié)構(gòu)。

畢竟,大模型發(fā)展至今,能汲取的文本數(shù)據(jù),已經(jīng)差不多了,要想在通往AGI的路上再上一個臺階,這種“非文本”的數(shù)據(jù),就顯得至關(guān)重要。

02 挑戰(zhàn)專家模型

除了上述特點外,OpenAI提交的文件中還提到:“GPT-5 可能還具備學習、分析、分類和回應數(shù)據(jù)的能力”。

從目前人工智能的發(fā)展趨勢來看,這很可能是指GPT-5具備了類似智能體的主動學習能力。

而這樣的能力,將會使GPT-5與以往只能被動地通過人類投喂數(shù)據(jù),來學習新知識的模型相比,產(chǎn)生本質(zhì)的區(qū)別。

具體來說,主動學習的能力,是指模型可以根據(jù)自身的目標和需求,自主地選擇、獲取和處理數(shù)據(jù),而不是僅僅依賴于人類提供的數(shù)據(jù)。

這樣可以讓模型更有效地利用數(shù)據(jù)中的信息和知識,更靈活地適應不同的數(shù)據(jù)環(huán)境和任務場景,而不只是被動地接收和輸出數(shù)據(jù)。

而這樣的能力,在GPT-5面臨一些比較陌生、垂直的領(lǐng)域時,就顯得尤為重要。

一些特定的領(lǐng)域,比如醫(yī)學、法律、金融等,通常有著自己特定的術(shù)語、規(guī)則和知識體系,對于普通的語言模型來說,可能難以理解和處理。

如果GPT-5具備了主動學習的能力,它可以自動地從網(wǎng)絡上搜集和更新這些領(lǐng)域的相關(guān)數(shù)據(jù),分析和分類這些領(lǐng)域的基本概念、重要原理和最新動態(tài),以及回應這些領(lǐng)域的常見問題、典型案例和實際應用。

如此,可以讓GPT-5更快地掌握這些領(lǐng)域的專業(yè)知識,更準確、高效地完成這些領(lǐng)域的相應任務。

而這一切,正是其邁向真正的通用大模型的關(guān)鍵。

因為如果GPT始終需要接入特定的“專家模型”,才能解決專業(yè)任務,那它就談不上真正的“通用”。

因為這樣會導致GPT對于不同領(lǐng)域和場景的智能能力存在差異和依賴,而且也會增加GPT與“專家模型”的溝通和協(xié)調(diào)成本,而不能保證在任何情況下都能實現(xiàn)高質(zhì)量的服務。

此前,外媒 Semianalysis 就對今年3月發(fā)布的GPT-4進行了揭秘,曝光了OpenAI采用混合專家模型來構(gòu)建GPT-4。

根據(jù)爆料,GPT-4 使用了16個混合專家模型 (mixture of experts),每個有 1110億個參數(shù),每次前向傳遞路由經(jīng)過兩個專家模型。

然而,更多的專家模型意味著更難泛化,也更難實現(xiàn)收斂。

這是因為每個專家模型都有自己的參數(shù)和策略,往往很難協(xié)調(diào)一致,進而使得GPT難以平衡和“顧全大局”。

而在具備了主動學習的能力后,GPT-5將有可能利用多模態(tài)的理解和推理能力,以及知識圖譜和數(shù)據(jù)庫,來分析和理解獲取到的數(shù)據(jù),并通過聚類算法和分類器,對相關(guān)數(shù)據(jù)進行關(guān)聯(lián)和歸納。

如此,GPT-5就能根據(jù)不同的數(shù)據(jù)環(huán)境和任務場景,有效地利用數(shù)據(jù)中的信息和知識。

03 取代更多工作

如前所述,在掃清了語言障礙,并以便捷的語音識別功能進入終端側(cè)后,GPT-5將通過持續(xù)的主動學習能力,不斷汲取不同場景、領(lǐng)域和模態(tài)下的知識,進而向著AGI的道路高速前行。

可以預見的是,當具備了這樣強大“通用性”的GPT-5,開始向各領(lǐng)域擴散后,除了少數(shù)具有數(shù)據(jù)壁壘的行業(yè)(如醫(yī)療)外,大部分垂直領(lǐng)域的大模型,都將會逐漸黯然失色。

因為說到底,相當一部分專家或垂直大模型,本質(zhì)上是某些企業(yè)算力、數(shù)據(jù)不足,無法高攀“通用大模型”,而不得不退而求其次的產(chǎn)物(這在國內(nèi)尤為明顯)。

倘若一個通用大模型,憑借強大的學習能力,就能夠精通大部分行業(yè),那誰又會愿意繁瑣地在不同的模型之間切換,并為不同的模型承擔多份訓練、使用成本呢?

從這點上來說,專家模型逐漸被通用模型取代,是人類在通往AGI道路上一個不可避免的歷史過程。

而與此相伴的另一個現(xiàn)象,則是更多細分的、瑣碎的工作被取代。

因為在有了更強大的通用大模型后,人們將會發(fā)現(xiàn),其實很多崗位的工作內(nèi)容,是可以被合并、被統(tǒng)合的。

產(chǎn)品經(jīng)理和數(shù)據(jù)分析師就是一個可能的例子。

例如,在一個新產(chǎn)品開發(fā)的項目中,GPT-5可以根據(jù)給定的產(chǎn)品概念或需求,從網(wǎng)絡上搜索相關(guān)的市場調(diào)研、競品分析、用戶畫像等數(shù)據(jù),并下載到自己的內(nèi)存中。

之后,它會通過自己的多模態(tài)的理解和邏輯推理能力,以及知識圖譜和數(shù)據(jù)庫,來分析和理解獲取到的數(shù)據(jù)。

在得到了相應的數(shù)據(jù),并將其進行分類和組織后,GPT-5就會通過語言理解能力,從對話系統(tǒng)的反饋中學習相關(guān)的營銷策略、用戶反饋等信息,并將其與給定的產(chǎn)品概念或需求進行比較和評估。

如此一來,產(chǎn)品經(jīng)理和數(shù)據(jù)分析師這兩個崗位,就被高效地“合并”了。

而在通往AGI的未盡之路上,這樣被合并和取代的崗位,還有無數(shù)種。

因此,一個通用性更強的GPT-5,對人類而言,既是生產(chǎn)力進步的福音,但同時也是行業(yè)大地震的前奏。

到了那時,許多尚不具備通用大模型能力,又缺乏行業(yè)壁壘的企業(yè),將會如沙子堆起的城堡一樣,脆弱地倒下。

而更多普通的個體,面對不斷被取代的崗位,將會更深刻地感受到時代的不確定性……

本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人。

OpenAI

  • ChatGPT大規(guī)模中斷,部分用戶受到影響
  • OpenAI買下域名chat.com

評論

暫無評論哦,快來評價一下吧!

下載界面新聞

微信公眾號

微博

GPT-5要來了,AI行業(yè)會發(fā)生哪些劇變?

一個通用性更強的GPT-5,對人類而言,既是生產(chǎn)力進步的福音,但同時也是行業(yè)大地震的前奏。

圖片來源:界面新聞 范劍磊

文|阿爾法工場

從chatGPT問世至今,AI就在以月為單位飛速進化著,其模型之多,迭代之快,讓很多人不不禁驚覺:人類似乎真的站在了AGI大門的邊緣。

而最近,美國專利商標局 (USPTO) 披露的一份文件顯示:OpenAI于7月18日提交了「GPT-5」的商標申請。并且已經(jīng)被接收。

USPTO 文件截圖

盡管在今年上半年,各個AI專家、學者已經(jīng)多次聯(lián)合發(fā)表公開信,呼吁人們重視生成式 AI 的潛在風險,而OpenAI當時也宣布短期內(nèi)不會有訓練GPT-5的計劃。

然而,科技的誘惑,終究還是讓人類打破了禁忌的邊界。

在這次披露的申請書中,OpenAI提到,尚未發(fā)布的GPT-5將具備眾多GPT-4所沒有的能力,而且?guī)缀趺恳豁椂紕χ窤GI。

USPTO 文件截圖

那么,這樣的改變,對AI和人類而言,又意味著什么?

今天,本文就將嘗試從OpenAI的申請文件中披露的有限信息,對GPT-5可能的功能、變化,及所造成的影響,進行一番簡單的剖析。

01 通往AGI之路

在此次披露的文件中,OpenAI最先提到的一個變化,就是多模態(tài)功能的加強。

具體來說,GPT-5 的功能包括把文本或語音從一種語言翻譯成另一種語言、語音識別、生成文本和語音等。

雖然在現(xiàn)在的GPT-4中,用戶同樣可以實現(xiàn)不同語種間的翻譯,但既然翻譯功能在這里被單獨挑出來,想必是重新優(yōu)化過了。

那OpenAI為何會如此突出GPT-5的翻譯能力?

這或許是因為,GPT走向通用的前提之一,就是盡可能縮小不同語言使用大模型的成本差距。

此前,牛津大學的研究成果顯示,由于 OpenAI 等服務所采用的服務器成本衡量,和計費的方式的不同,英語輸入和輸出的費用要比其他語言低得多。

其中簡體中文的費用大約是英語的兩倍,西班牙語是英語的 1.5 倍,而緬甸的撣語則是英語的 15 倍。

因為像中文這樣的語言有著不同、更復雜的結(jié)構(gòu),導致它們需要更高的詞元化率。

例如,根據(jù) OpenAI 的 GPT3 分詞器 ,“你的愛意(your affection)” 的詞元,在英語中只需要兩個詞元,但在簡體中文中需要八個詞元。

這意味著,除了英語之外的其他語言,使用和訓練模型要貴得多。

而一旦翻越了“語言障礙”這道檻,無疑會直接地掃清橫亙在GPT面前的這條通用性障礙。

除此之外,文件中突出的語音識別功能,看似只是一個不起眼的改動,但從某種程度上說,這也是OpenAI對GPT-5在通往AGI的道路上鋪下的又一塊路磚。

眾所周知,在今后的大模型發(fā)展方向上,模型變得邊緣化、終端化,已經(jīng)成了一個愈發(fā)明顯的趨勢。

自從今年7月,高通發(fā)布了能在手機上運行的10億參數(shù)大模型后,榮耀、蘋果等廠商,也相繼宣布要推出自身的“大模型”手機。

以手機為起點,將來的AI數(shù)據(jù),將會越來越多地在攝像頭、傳感器、自動駕駛等終端側(cè)進行處理。

而在這樣的應用場景中,語音識別無疑更便捷、高效。

例如,AI語言模型可以讓駕駛員可以通過語音控制車輛行駛。將駕駛員的語音指令轉(zhuǎn)化為可執(zhí)行的指令,例如啟動、停止、加速、剎車等操作。

而類似于SIri那樣存在于手機系統(tǒng)中的智能助手,也會優(yōu)先考慮通過語音指令來進行控制。

由此可見,語音識別并非只是錦上添花,而是GPT-5進入終端側(cè)的“標配”,

而通過在這一個個終端設備的下沉,GPT-5也將由此獲得更多邊緣化的、非語言的數(shù)據(jù)結(jié)構(gòu)。

畢竟,大模型發(fā)展至今,能汲取的文本數(shù)據(jù),已經(jīng)差不多了,要想在通往AGI的路上再上一個臺階,這種“非文本”的數(shù)據(jù),就顯得至關(guān)重要。

02 挑戰(zhàn)專家模型

除了上述特點外,OpenAI提交的文件中還提到:“GPT-5 可能還具備學習、分析、分類和回應數(shù)據(jù)的能力”。

從目前人工智能的發(fā)展趨勢來看,這很可能是指GPT-5具備了類似智能體的主動學習能力。

而這樣的能力,將會使GPT-5與以往只能被動地通過人類投喂數(shù)據(jù),來學習新知識的模型相比,產(chǎn)生本質(zhì)的區(qū)別。

具體來說,主動學習的能力,是指模型可以根據(jù)自身的目標和需求,自主地選擇、獲取和處理數(shù)據(jù),而不是僅僅依賴于人類提供的數(shù)據(jù)。

這樣可以讓模型更有效地利用數(shù)據(jù)中的信息和知識,更靈活地適應不同的數(shù)據(jù)環(huán)境和任務場景,而不只是被動地接收和輸出數(shù)據(jù)。

而這樣的能力,在GPT-5面臨一些比較陌生、垂直的領(lǐng)域時,就顯得尤為重要。

一些特定的領(lǐng)域,比如醫(yī)學、法律、金融等,通常有著自己特定的術(shù)語、規(guī)則和知識體系,對于普通的語言模型來說,可能難以理解和處理。

如果GPT-5具備了主動學習的能力,它可以自動地從網(wǎng)絡上搜集和更新這些領(lǐng)域的相關(guān)數(shù)據(jù),分析和分類這些領(lǐng)域的基本概念、重要原理和最新動態(tài),以及回應這些領(lǐng)域的常見問題、典型案例和實際應用。

如此,可以讓GPT-5更快地掌握這些領(lǐng)域的專業(yè)知識,更準確、高效地完成這些領(lǐng)域的相應任務。

而這一切,正是其邁向真正的通用大模型的關(guān)鍵。

因為如果GPT始終需要接入特定的“專家模型”,才能解決專業(yè)任務,那它就談不上真正的“通用”。

因為這樣會導致GPT對于不同領(lǐng)域和場景的智能能力存在差異和依賴,而且也會增加GPT與“專家模型”的溝通和協(xié)調(diào)成本,而不能保證在任何情況下都能實現(xiàn)高質(zhì)量的服務。

此前,外媒 Semianalysis 就對今年3月發(fā)布的GPT-4進行了揭秘,曝光了OpenAI采用混合專家模型來構(gòu)建GPT-4。

根據(jù)爆料,GPT-4 使用了16個混合專家模型 (mixture of experts),每個有 1110億個參數(shù),每次前向傳遞路由經(jīng)過兩個專家模型。

然而,更多的專家模型意味著更難泛化,也更難實現(xiàn)收斂。

這是因為每個專家模型都有自己的參數(shù)和策略,往往很難協(xié)調(diào)一致,進而使得GPT難以平衡和“顧全大局”。

而在具備了主動學習的能力后,GPT-5將有可能利用多模態(tài)的理解和推理能力,以及知識圖譜和數(shù)據(jù)庫,來分析和理解獲取到的數(shù)據(jù),并通過聚類算法和分類器,對相關(guān)數(shù)據(jù)進行關(guān)聯(lián)和歸納。

如此,GPT-5就能根據(jù)不同的數(shù)據(jù)環(huán)境和任務場景,有效地利用數(shù)據(jù)中的信息和知識。

03 取代更多工作

如前所述,在掃清了語言障礙,并以便捷的語音識別功能進入終端側(cè)后,GPT-5將通過持續(xù)的主動學習能力,不斷汲取不同場景、領(lǐng)域和模態(tài)下的知識,進而向著AGI的道路高速前行。

可以預見的是,當具備了這樣強大“通用性”的GPT-5,開始向各領(lǐng)域擴散后,除了少數(shù)具有數(shù)據(jù)壁壘的行業(yè)(如醫(yī)療)外,大部分垂直領(lǐng)域的大模型,都將會逐漸黯然失色。

因為說到底,相當一部分專家或垂直大模型,本質(zhì)上是某些企業(yè)算力、數(shù)據(jù)不足,無法高攀“通用大模型”,而不得不退而求其次的產(chǎn)物(這在國內(nèi)尤為明顯)。

倘若一個通用大模型,憑借強大的學習能力,就能夠精通大部分行業(yè),那誰又會愿意繁瑣地在不同的模型之間切換,并為不同的模型承擔多份訓練、使用成本呢?

從這點上來說,專家模型逐漸被通用模型取代,是人類在通往AGI道路上一個不可避免的歷史過程。

而與此相伴的另一個現(xiàn)象,則是更多細分的、瑣碎的工作被取代。

因為在有了更強大的通用大模型后,人們將會發(fā)現(xiàn),其實很多崗位的工作內(nèi)容,是可以被合并、被統(tǒng)合的。

產(chǎn)品經(jīng)理和數(shù)據(jù)分析師就是一個可能的例子。

例如,在一個新產(chǎn)品開發(fā)的項目中,GPT-5可以根據(jù)給定的產(chǎn)品概念或需求,從網(wǎng)絡上搜索相關(guān)的市場調(diào)研、競品分析、用戶畫像等數(shù)據(jù),并下載到自己的內(nèi)存中。

之后,它會通過自己的多模態(tài)的理解和邏輯推理能力,以及知識圖譜和數(shù)據(jù)庫,來分析和理解獲取到的數(shù)據(jù)。

在得到了相應的數(shù)據(jù),并將其進行分類和組織后,GPT-5就會通過語言理解能力,從對話系統(tǒng)的反饋中學習相關(guān)的營銷策略、用戶反饋等信息,并將其與給定的產(chǎn)品概念或需求進行比較和評估。

如此一來,產(chǎn)品經(jīng)理和數(shù)據(jù)分析師這兩個崗位,就被高效地“合并”了。

而在通往AGI的未盡之路上,這樣被合并和取代的崗位,還有無數(shù)種。

因此,一個通用性更強的GPT-5,對人類而言,既是生產(chǎn)力進步的福音,但同時也是行業(yè)大地震的前奏。

到了那時,許多尚不具備通用大模型能力,又缺乏行業(yè)壁壘的企業(yè),將會如沙子堆起的城堡一樣,脆弱地倒下。

而更多普通的個體,面對不斷被取代的崗位,將會更深刻地感受到時代的不確定性……

本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人。