文|腦極體
開源大模型對(duì)閉源大模型的沖擊,變得非常猛烈。
今年3月,Meta發(fā)布了Llama(羊駝),很快成為AI社區(qū)內(nèi)最強(qiáng)大的開源大模型,也是許多模型的基座模型。有人戲稱,當(dāng)前的大模型集群,就是一堆各種花色的“羊駝”。
而就在前些天,Meta又推出了免費(fèi)可商用版本的“羊駝2號(hào)”——Llama2,據(jù)說性能比肩GPT-3.5。
這在整個(gè)大模型圈都是非常炸裂的。
我們知道,各個(gè)互聯(lián)網(wǎng)、科技公司都在競(jìng)相訓(xùn)練、推出自己的大模型,投入了大量的計(jì)算資源和成本,如果不能有效的完成商業(yè)化,那么這些大模型就很難回收成本,后續(xù)的迭代、更新、升級(jí)都成問題,不僅研發(fā)企業(yè)會(huì)虧個(gè)底掉,更苦惱的大概就是“前功盡棄”的用戶了。
而現(xiàn)在有了自由開放強(qiáng)大的開源大模型,誰還愿意給閉源大模型送錢呢?
還真的有。
開源是大勢(shì)所趨,但閉源大模型依然有其存在意義和商業(yè)價(jià)值。按照目前的AI產(chǎn)業(yè)落地經(jīng)驗(yàn)來看,用好大模型,還是得靠閉源。
今天我們就來聊聊這個(gè)問題,到底是誰,需要閉源大模型?
到產(chǎn)業(yè)去,到產(chǎn)業(yè)去
大模型的商業(yè)化終點(diǎn)是產(chǎn)業(yè),想必已經(jīng)是不用過多解釋的共識(shí)了。
前不久,我參加某一個(gè)國產(chǎn)大模型的內(nèi)部溝通會(huì),對(duì)方高層就明確表示,自己全部用的是閉源代碼,并且堅(jiān)持走閉源路線,就是考慮到訓(xùn)練大模型與行業(yè)伙伴合作,其中很多隱私數(shù)據(jù)是不方便開源的。
見一斑可窺全豹,至少在短期內(nèi),大模型走向產(chǎn)業(yè),落地還是要靠閉源。
模型方面,閉源大模型的質(zhì)量更高。
就拿目前最能打的Llama 2為例,Meta 將 Llama 2 70B 的結(jié)果,與閉源模型進(jìn)行了比較,結(jié)果在 MMLU 和 GSM8K 上接近 GPT-3.5,但在編碼基準(zhǔn)上,還存在顯著差距,不少數(shù)據(jù)在多樣性和質(zhì)量方面有所欠缺。
當(dāng)然,開源大模型的優(yōu)化迭代速度很快。但開源的本質(zhì)和“有性繁殖”很像,就是通過大量繁殖和變異,如同開篇那張“羊駝集群”一樣,面對(duì)不確定的未來,借助進(jìn)化的“優(yōu)勝劣汰”,讓最優(yōu)質(zhì)的后代持續(xù)涌現(xiàn)。所以,開源軟件的分支多,對(duì)用戶來說,這個(gè)選擇的成本是很高的,加上開發(fā)人員眾多,版本控制是一個(gè)問題。
安全性方面,閉源大模型的可靠性更高。
開源大模型要遵守開源協(xié)議,商業(yè)使用需要獲得授權(quán),海外開源大模型也要受到屬地管轄,github就曾封禁俄羅斯開發(fā)者賬號(hào)。使用海外開源大模型開發(fā)產(chǎn)品,供應(yīng)鏈的風(fēng)險(xiǎn),是客觀存在的。
那么,使用國產(chǎn)開源大模型呢?安全性得到保障,但從商業(yè)角度看,很多客戶,如大型政企,也非??粗卮竽P驮跇I(yè)務(wù)上的可靠性,采購時(shí)往往需要大公司的品牌背書。一方面研發(fā)投入更大,口碑更高;另一方面,萬一大模型生成不當(dāng),導(dǎo)致商業(yè)損失或商譽(yù)問題,使用閉源大模型可以問責(zé)服務(wù)商,使用開源大模型總不能找全球開發(fā)者算賬吧?
比如大模型創(chuàng)業(yè)公司Huging Face,為客戶提供AI咨詢,是開源社區(qū)的臺(tái)柱子,表示有大量客戶希望把自己的私有數(shù)據(jù)/專業(yè)數(shù)據(jù)用來訓(xùn)模型,并不想把這些數(shù)據(jù)給到 OpenAl。
產(chǎn)業(yè)化方面,閉源大模型的長期服務(wù)能力更強(qiáng)、更可用。
大模型落地,并不是接入API、塞進(jìn)數(shù)據(jù)、調(diào)參優(yōu)化就結(jié)束了。作為一種新興技術(shù),大模型與業(yè)務(wù)場(chǎng)景的融合,還有非常多挑戰(zhàn)。比如大模型需要通過蒸餾壓縮,減小模型規(guī)模,才能在端側(cè)部署,很多企業(yè)根本沒有這類專業(yè)人才。
再比如,大模型與業(yè)務(wù)結(jié)合,需要產(chǎn)品、運(yùn)營、測(cè)試工程師等多種角色共同參與,這些服務(wù)能力是以coder為主的開源團(tuán)隊(duì),所很難提供的。此外,大模型的長期應(yīng)用,算力、存儲(chǔ)、網(wǎng)絡(luò)等配套都要跟上,開源社區(qū)無法幫助用戶“一站式”解決這些細(xì)節(jié)問題。
還有數(shù)據(jù)隱私顧慮,大模型是不能直接為產(chǎn)業(yè)所用的,還要通過專有場(chǎng)景數(shù)據(jù)進(jìn)行優(yōu)化,而這些數(shù)據(jù)訓(xùn)練完的模型會(huì)被開源開放出去,讓企業(yè)顧慮重重。
我們?cè)稍L過一個(gè)智慧醫(yī)療研發(fā)團(tuán)隊(duì),對(duì)方表示,大量醫(yī)療數(shù)據(jù)分布在各大醫(yī)院、研究機(jī)構(gòu),又涉及患者隱私,大家對(duì)于把數(shù)據(jù)拿出來共同訓(xùn)練一個(gè)行業(yè)模型,都存在顧慮。一方面是安全得不到保障,另一方面是自己的數(shù)據(jù)質(zhì)量高,但從中得不到恰當(dāng)?shù)幕貓?bào),和其他數(shù)據(jù)質(zhì)量低的機(jī)構(gòu)一樣,很難協(xié)調(diào)。在開源大模型的共建中,如何得到數(shù)據(jù)、把握配方、確定各方貢獻(xiàn),還存在很多難題。
開源大模型需要平衡技術(shù)創(chuàng)新自由和版權(quán)收益之間的沖突,而使用閉源大模型就沒有這方面的麻煩,數(shù)據(jù)和模型的所有權(quán)、使用權(quán)都很清晰,牢牢掌握在企業(yè)自己手里。
可以說,目前開源大模型還無法達(dá)到實(shí)際的業(yè)務(wù)需求。而開源大模型使用者和ISV集成商,是需要獲得商業(yè)回報(bào)的,如果開源大模型不可商用、效果不好、很難賺錢,那么即使免費(fèi),企業(yè)也會(huì)慎重考慮要不要投入人來開發(fā)。
所以,未來一段時(shí)間,閉源依然是大模型落地產(chǎn)業(yè)的熱門選擇。
到群眾去,到群眾去
可能有人不理解了,開源免費(fèi)商用,大家都能用上白菜價(jià)的大模型了,對(duì)開發(fā)者和企業(yè)用戶多友好,你怎么還說閉源好?是不是為一門心思賺錢的大廠站臺(tái)?
非也。
但凡了解開源,都會(huì)支持開源。但凡支持開源,都會(huì)關(guān)注開源的商業(yè)化。
中國科學(xué)院梅宏院士曾說過,開源以理想主義為源起,以商業(yè)化為蓬勃助力,是開放創(chuàng)新的典范。沒有商業(yè)化,不可能有開源。
所以,開源也好,閉源也好,誰能更早“可商用”,誰就更有未來。這一點(diǎn)上,閉源大模型可能更占優(yōu)勢(shì),畢竟有底氣閉源的廠商,還是有兩把刷子和研發(fā)家底兒的。
那么,開源大模型的優(yōu)勢(shì)在哪里呢?如果說閉源大模型要到產(chǎn)業(yè)去,那么開源大模型就要到群眾中去,主打一個(gè)人多力量大。
(LeCun認(rèn)為Llama-v2會(huì)改變LLM的市場(chǎng)格局)
開源大模型不同于傳統(tǒng)開源軟件,把源代碼放上去,然后全球開發(fā)者來貢獻(xiàn)代碼就完了。大模型的協(xié)同共建,更多體現(xiàn)在社區(qū)繁榮,大家一起把模型做優(yōu)化、數(shù)據(jù)做豐富、工具做完善、應(yīng)用做全面……
這時(shí)候,開源模式能夠帶來幾個(gè)好處:
1.技術(shù)創(chuàng)新。開源社區(qū)可以匯聚廣大科技企業(yè)、研究機(jī)構(gòu)和開發(fā)者,對(duì)模型進(jìn)行優(yōu)化、改進(jìn)、加速迭代,讓模型技術(shù)和配套數(shù)據(jù)集、應(yīng)用工具等,變得豐富、高質(zhì),從而保持領(lǐng)先。
2.人才爭(zhēng)奪。大模型作為新興技術(shù),人才緊缺,通過開源社區(qū)吸引全球優(yōu)秀人才做貢獻(xiàn),加速大模型升級(jí),能夠拉開差距。有競(jìng)爭(zhēng)才有壓力,所以LLama 2發(fā)布之后,很快傳出OpenAI也開始考慮半年內(nèi)開源GPT-3.5的消息,開發(fā)者們有福了。
3.生態(tài)合攏。目前各行各業(yè)的IT解決方案和數(shù)字化轉(zhuǎn)型,大量使用開源技術(shù)和應(yīng)用,建設(shè)大模型開源生態(tài),讓IT人才和企業(yè)使用相關(guān)技術(shù),對(duì)于后期的商業(yè)化非常有幫助。比如OpenAI 的合作伙伴/投資方微軟,這次也選擇成為Llama 2 的首要合作伙伴,支持個(gè)人開發(fā)者和中小公司以最低成本調(diào)用Llama 2,這對(duì)azure無疑是一大利好。
不是所有開源大模型都能成功,生態(tài)是關(guān)鍵的護(hù)城河。
夾心餅干,向何處去?
就像手機(jī)操作系統(tǒng)的 iOS 與 Andriod,開源與閉源的競(jìng)爭(zhēng),并不是某一個(gè)領(lǐng)域打的“你死我活”,而是各自走出一條差異化的道路,迎來自己的天地。大模型也是如此。
閉源大模型開門迎客,開源大模型紅紅火火,大家都有光明的未來。
既然如此,為什么還有專家認(rèn)為,Llama 2開源對(duì)開源來說是一個(gè)巨大的飛躍,但對(duì)閉源的大模型公司是一個(gè)巨大打擊?
究竟打擊了誰?
答案應(yīng)該是,既不甘心只做應(yīng)用層、又沒能力卷過大廠的基礎(chǔ)大模型廠商。
谷歌研究人員曾發(fā)文說,因?yàn)橛虚_源社區(qū),我們(Google和OpenAI)沒有護(hù)城河。但是,OpenAI還有GPT-4這樣的閉源大模型作為殺手锏,只有被開源逼急了的情況下,才考慮把GPT-3.5開源,這里面是有技術(shù)代差的。而且GPT-3.5開源只透露了口風(fēng),具體進(jìn)展還是未知數(shù)。
所以,這類頭部科技廠商和云巨頭,如海外的谷歌、OpenAI,國內(nèi)的BATH,卡、錢、人才、數(shù)據(jù)、市場(chǎng)認(rèn)知度、客戶基礎(chǔ)都有優(yōu)勢(shì),走閉源路線來完成大模型商業(yè)化、產(chǎn)業(yè)化是有一定先發(fā)優(yōu)勢(shì)和壁壘的。
這就苦了那些一心想訓(xùn)基礎(chǔ)通用大模型的二三線廠商了。
此前,全球大小科技公司和各類科研機(jī)構(gòu),一擁而上訓(xùn)基礎(chǔ)大模型,比如某些機(jī)器視覺AI獨(dú)角獸,不小心就成了基礎(chǔ)層和應(yīng)用層之間的“夾心餅干”。
實(shí)力上打不過GPT,成本上打不過Llama,訓(xùn)出來的基礎(chǔ)通用大模型,還沒等到正式開放商用,就已經(jīng)過時(shí)了,注定是明日黃花。市場(chǎng)上拼不過巨頭,開放度不如開源社區(qū),幾乎不可能收回高昂的開發(fā)成本。
趁早放棄死磕大模型,或許才是明智選擇。
比如國內(nèi)某AI公司的大模型,此前私有化報(bào)價(jià)是一年30萬,隨后就宣布對(duì)學(xué)術(shù)研究完全開放,獲得授權(quán)可免費(fèi)商用。做大模型開源社區(qū),也有商業(yè)化的可能(如Linux/ Android/紅帽),同時(shí)也能避免跟頭部的通用大模型的“硬碰硬”。
(知名投資人關(guān)于Llama2開源的討論截圖/來自網(wǎng)絡(luò))
對(duì)于應(yīng)用層開發(fā)者和ISV集成商企業(yè)來說,用好產(chǎn)業(yè)接受度高的閉源大模型,可以更快讓客戶接受,更適合私有化定制部署的業(yè)務(wù)需求,更快完成商業(yè)落地和收入增長。
對(duì)于AI創(chuàng)業(yè)公司來說,開源直接就能用,避免重復(fù)造輪子,可能是更理想、低成本試錯(cuò)的商業(yè)化手段,“報(bào)團(tuán)取暖”貢獻(xiàn)大模型開源項(xiàng)目,推動(dòng)大模型開源社區(qū)的發(fā)展,也會(huì)獲得社區(qū)回饋和商業(yè)回饋。
中國大模型發(fā)展到高水平,既要有全球領(lǐng)先的閉源大模型打頭陣,也要有具備世界影響力的大模型開源社區(qū)。
道阻且長,行則將至。不妨用建設(shè)性心態(tài),來看待開源閉源之爭(zhēng),給國產(chǎn)閉源大模型一些信心,也給國內(nèi)開源社區(qū)一些鼓勵(lì)和支持。