正在閱讀:

一邊高速奔跑,一邊屢遭詬病,BI行業(yè)何去何從?

掃一掃下載界面新聞APP

一邊高速奔跑,一邊屢遭詬病,BI行業(yè)何去何從?

BI行業(yè)的現(xiàn)狀到底什么樣子?

文|第一新聲 不做閑魚

編輯|也行

商業(yè)智能(BI)賽道經(jīng)歷了從國外廠商到國內(nèi)廠商的遷移,也正經(jīng)歷從傳統(tǒng)時代向智能時代的變革。

近期,市場上有人闡述了BI行業(yè)停滯不前的窘境以及數(shù)據(jù)分析工具市場的現(xiàn)狀。并且有許多讀者留下了共鳴的討論,其中一些評論者認為:商業(yè)智能(BI)系統(tǒng)的推出或部署過于頻繁,卻從最終用戶那里得到不冷不熱的反應(yīng),長期以來飽受采用率低下之苦。

目前,BI行業(yè)的現(xiàn)狀到底什么樣子?真的是停滯不前嗎?未來BI的道路該如何發(fā)展?第一新聲帶著這些疑問,與國內(nèi)兩家BI頭部企業(yè)進行了交流,看看他們是如何解釋的?

一、BI仍是剛需,未來5年增長率17.9%

BI即Business Intelligence,中文稱商業(yè)智能或商業(yè)智慧。1996年,Gartner正式將商業(yè)智能定義為:一類由數(shù)據(jù)倉庫(或數(shù)據(jù)集市)、查詢報表、數(shù)據(jù)分析、數(shù)據(jù)挖掘、數(shù)據(jù)備份和恢復等部分組成的、以幫助企業(yè)決策為目的的技術(shù)及其應(yīng)用。

BI的核心技術(shù)主要包括數(shù)據(jù)存儲、數(shù)據(jù)ETL、數(shù)據(jù)分析、數(shù)據(jù)挖掘,以及數(shù)據(jù)可視化分析。隨著數(shù)據(jù)量的激增和應(yīng)用場景的復雜化,諸如Hadoop和Hive等大數(shù)據(jù)技術(shù)的出現(xiàn)很好地彌補了BI處理大數(shù)據(jù)的能力。

從發(fā)展階段來看,2013年以前屬于傳統(tǒng)BI,該階段的產(chǎn)品以IT為主導,在大數(shù)據(jù)量的處理上擁有較好的性能和穩(wěn)定性,但是數(shù)據(jù)分析的能力和靈活性比較差。

2013年至今,自助型BI高速發(fā)展期,傳統(tǒng)BI逐漸衰退。這是由于IT驅(qū)動向業(yè)務(wù)驅(qū)動的轉(zhuǎn)變讓敏捷型/自主型BI產(chǎn)品出現(xiàn),使得采購成本低、項目周期短,

值得注意的是,2013年大數(shù)據(jù)概念在國內(nèi)開始普及,國內(nèi)BI市場進入萌芽階段。

國內(nèi)大部分BI廠商都是在2013年前后成立,或拿到融資、或市場份額翻倍增長。此外,國外的老牌BI產(chǎn)品從這個階段開始市場份額逐步下滑,新型的國外BI產(chǎn)品例如Tableau、Qlik 等開始在國內(nèi)快速布局,微軟也推出Power View。

要知道,早年間以Business Objects、Cognos、BIEE、Micro Strategy為首的四大品牌近乎統(tǒng)領(lǐng)了全球的BI市場。

隨著我國大數(shù)據(jù)產(chǎn)業(yè)迅速發(fā)展,政府出臺各項扶持政策,大量創(chuàng)新企業(yè)迎來發(fā)展機遇,國產(chǎn)BI也嶄露頭角。同時,BI行業(yè)的演進出現(xiàn)兩個趨勢,從IT到業(yè)務(wù),從報表到?jīng)Q策。

從企業(yè)類型來看,國內(nèi)市面上從事BI的企業(yè)分為兩種,一是獨立廠商,以帆軟、思邁特、永洪科技等為代表。他們的產(chǎn)品歷經(jīng)市場和客戶檢驗,客戶觸點廣泛,競爭實力不容小覷。

二是互聯(lián)網(wǎng)大廠,例如阿里云基于阿里電商生態(tài)打造了Quick BI 數(shù)據(jù)可視化分析平臺,對接各類云上數(shù)據(jù)庫和自建數(shù)據(jù)庫;騰訊基于微信社交生態(tài),推出騰訊有數(shù),幫助微信內(nèi)平臺進行系統(tǒng)性的數(shù)據(jù)分析;百度則基于百度智能云,打造數(shù)據(jù)可視化Sugar BI 平臺;網(wǎng)易也于2017年推出了網(wǎng)易有數(shù)。脫胎于內(nèi)部復雜業(yè)務(wù)的互聯(lián)網(wǎng)大廠,具有更為明顯的資金供給、生態(tài)搭建、人才培養(yǎng)等方面的優(yōu)勢。

從市場增速來看,發(fā)展至今,我國已進入BI及DA(數(shù)據(jù)分析)領(lǐng)域的第一方陣,并成為發(fā)展最快的國家之一。

IDC數(shù)據(jù)顯示,2020年中國商業(yè)智能軟件市場規(guī)模為5.8億美元,同比增長17.1%。2021年中國商業(yè)智能軟件市場增速將快速恢復,市場規(guī)模預計達到7.0億美元,同比增長恢復到21%。到2025年,中國商業(yè)智能軟件市場規(guī)模將達到13.3億美元,未來5年整體市場年復合增長率(CAGR)為17.9%。

“早期僅有金融、電信領(lǐng)域?qū)I有必要的需求,近20年的時間,各行各業(yè)對于數(shù)據(jù)的依賴度越來越高,現(xiàn)在廣泛的對BI有了需求,雖然BI市場在所有的技術(shù)領(lǐng)域里不算很大的蛋糕,但增長率確實非???,比GDP的增長率高了好幾倍,說明BI市場很有活力?!彼歼~特軟件副總裁徐晶在參加第一新聲舉辦的峰會時說道。

觀遠數(shù)據(jù)曾接受媒體采訪時表示,中國數(shù)據(jù)分析與商業(yè)智能的市場才剛剛開始,數(shù)字化轉(zhuǎn)型是未來十年中國經(jīng)濟的最大主題,而BI是其中最確定的剛需之一。未來10年,國內(nèi)會有現(xiàn)在50-100倍的用戶活躍的使用BI與數(shù)據(jù)分析,在企業(yè)運營與決策中獲得領(lǐng)先優(yōu)勢。

二、商業(yè)模式之選:產(chǎn)品/SaaS模式VS服務(wù)模式

TO B企業(yè)的商業(yè)模式總會面臨兩個選擇,到底是產(chǎn)品/SaaS模式還是服務(wù)模式,BI行業(yè)也不例外。

一是產(chǎn)品/SaaS模式,是將BI產(chǎn)品或者SaaS交付給客戶,并由客戶自行實施。

Tableau是該模式的典型代表,其主要以Tableau Desktop和Server版本為主,同時也提供嵌入式開發(fā)和SaaS服務(wù)。除咨詢服務(wù)外,Tableau的使用主要由業(yè)務(wù)人員根據(jù)實際需要自行完成。此外,MicroStrategy和大部分敏捷BI廠商及SaaS服務(wù)提供商都屬于該模式。

產(chǎn)品/SaaS模式提供給客戶靈活敏捷的BI產(chǎn)品,客戶能夠及時應(yīng)對業(yè)務(wù)變化的需要,但是單一的產(chǎn)品通常難以滿足客戶業(yè)務(wù)定制化的需要。

二是服務(wù)模式,以IT服務(wù)或者業(yè)務(wù)服務(wù)的方式為客戶提供基于BI的整體解決方案。另外,服務(wù)模式又包括IT服務(wù)型和業(yè)務(wù)服務(wù)型兩種。

提供IT服務(wù)模式的企業(yè)主要以O(shè)racle、SAP、IBM、SAS等傳統(tǒng)BI企業(yè)為主。這類企業(yè)主要以搭建BI信息系統(tǒng)為主,但在搭建數(shù)據(jù)倉庫過程中需要與業(yè)務(wù)人員進行充分配合,涉及大量業(yè)務(wù)咨詢與梳理過程。傳統(tǒng)BI廠商都建立有自身的BI實施方法論。以SAPBW為例,其實施過程大概分為項目計劃和準備、設(shè)計階段、開發(fā)階段、測試和部署階段以及系統(tǒng)上線階段等。

IT服務(wù)模式雖然充分結(jié)合的業(yè)務(wù)需求和技術(shù)實現(xiàn),但其主要以傳統(tǒng)BI流程為主,通常涉及多個部門的協(xié)調(diào)配合,同時其高昂的部署成本難以靈活的適應(yīng)現(xiàn)代企業(yè)的需要。

業(yè)務(wù)服務(wù)模式基于一站式大數(shù)據(jù)分析平臺構(gòu)建敏捷型BI產(chǎn)品,并以服務(wù)的方式支撐企業(yè)的業(yè)務(wù)分析需求。業(yè)務(wù)服務(wù)型廠商既要具備建立數(shù)據(jù)湖的能力,而不僅僅是建立數(shù)據(jù)倉庫,以便數(shù)據(jù)整合;通常以SaaS方式提供多樣化的服務(wù)。

一位投資人告訴第一新聲,如果不是SaaS產(chǎn)品,未來企業(yè)在獲客成本以及定制化成本可能會比較高,存在一定的風險。

徐晶表示:“我們自己走的路線是從大型客戶的服務(wù)做起,慢慢地把它變成產(chǎn)品、品牌。至于企業(yè)選擇什么模式,要從兩方面來看,一是面對競爭激烈的市場,客戶的需求經(jīng)常變化,所以要求BI系統(tǒng)有極高的適應(yīng)性和靈活性。我認為在中國,標準化的SaaS產(chǎn)品對大型客戶是不行的,還是以服務(wù)為主。但也希望盡量產(chǎn)品化,以功能代替服務(wù),降低交付成本。二是純標準化產(chǎn)品也有未來,例如在一些新興的小微企業(yè),或者主動擁抱接云端SaaS服務(wù)的企業(yè)。這種情況下有標準化產(chǎn)品存在的空間?!?/p>

“我們的產(chǎn)品分為SaaS和私有部署兩種模式,主要取決于客戶是否愿意把數(shù)據(jù)存在公有云上。我明顯感覺到未來的兩年,SaaS模式的使用量將慢慢增長?!庇篮榭萍悸?lián)席總裁馬云說道。

三、一邊高速奔跑,一邊屢遭詬?。?/h4>

BI行業(yè)發(fā)展二十多年,現(xiàn)狀卻是一邊是市場和廠商高速奔跑,一邊是問題諸多、屢遭詬病。

尤其是傳統(tǒng)式 BI 存在諸多問題。一是開發(fā)效率低下,傳統(tǒng)BI的報表制作是由業(yè)務(wù)部門提交到IT部門,IT人員根據(jù)分析需求進行建模,業(yè)務(wù)人員查看分析結(jié)果報表,流程繁瑣冗長,難以應(yīng)對復雜多變的業(yè)務(wù)需求。二是分析不靈活,制作出的報表是相對靜態(tài)的,僅能查看結(jié)果,不能實現(xiàn)靈活交互分析。三是開發(fā)部署周期長,BI項目部署開發(fā)周期往往需要幾個月的開發(fā)時間,面對日新月異的商業(yè)環(huán)境,委實不夠“敏捷”。

文章一開始,就提到過有人表示BI行業(yè)停滯不前,其中一個典型問題是,BI行業(yè)存在“玩具賣家問題”。銷售玩具假定兒童是使用者 (用戶),但父母是預算持有者和決策者。與玩具銷售一樣,BI部署中的用戶和買家是兩個不同的角色。企業(yè)BI銷售流程主要是為買家(IT預算持有者)量身定制的,而不是為實際上每天都不得不使用產(chǎn)品的非技術(shù)人員定制的。結(jié)果,BI平臺充斥著半生不熟、花里胡哨的無用功能,在組織購買平臺后沒有人實際使用這些功能,這也導致采用率低。

確實如此,目前在企業(yè)中負責BI工作的多為專業(yè)分析師、IT運維等職能人員,角色屬性決定了他們無法對于決策的業(yè)務(wù)結(jié)果負責,割裂了分析與執(zhí)行,決策和結(jié)果。理想的模式應(yīng)該是讓業(yè)務(wù)人員自主完成分析工作,和他們的主觀判斷結(jié)合,形成最優(yōu)的解決路徑,并由他們對結(jié)果負責。

于是,自助式 BI 應(yīng)運而生,自助式 BI 面向業(yè)務(wù)人員,追求業(yè)務(wù)人員與 IT 人員的高效配合。國外產(chǎn)品主要有Power BI、Tableau、Qlikview,國內(nèi)產(chǎn)品有帆軟、永洪科技、觀遠數(shù)據(jù)等。

在思邁特軟件副總裁徐晶看來,無論是傳統(tǒng)開發(fā)式BI還有自助式BI,在企業(yè)應(yīng)用時均面臨三大挑戰(zhàn)。

第一是數(shù)據(jù)質(zhì)量或數(shù)據(jù)管理的問題。

這么多年沒有一種解決方案能把企業(yè)的數(shù)據(jù)治理清楚或者管理到位,每個企業(yè)對數(shù)據(jù)的認知不到位,一開始就沒有規(guī)劃好數(shù)據(jù)標準和指標體系,都是先做業(yè)務(wù),再逐步優(yōu)化流程,再產(chǎn)生數(shù)據(jù),然后不斷改變業(yè)務(wù),調(diào)整流程,積累了各種各樣的數(shù)據(jù),而且各部門數(shù)據(jù)口徑不一致,連最基礎(chǔ)的數(shù)據(jù)標準都無法統(tǒng)一,那數(shù)據(jù)分析也將成為“精確的錯誤”,無法真正發(fā)揮出數(shù)據(jù)價值。

第二是數(shù)據(jù)分析的工具,即BI本身也是一個挑戰(zhàn),如何讓業(yè)務(wù)員真的用起來不是一個簡單的可視化解決方案,它在實際應(yīng)用中會出現(xiàn)很多的問題。

數(shù)據(jù)分析實際上是一個立體的需求,不是一個簡單的功能需求,就好像每個人都要去參與城市交通,而交通工具是一種解決交通需求的工具體系,比如有自行車、公交車、出租車、私家車、地鐵等各種各樣的方案。數(shù)據(jù)分析在企業(yè)里面也是一樣,沒有一個行業(yè)會用一種的方式去分析數(shù)據(jù),也沒有一個企業(yè)的所有人會愿意用同一種方式分析數(shù)據(jù)。

所以無論BI怎么發(fā)展,Excel這種數(shù)據(jù)分析方式會永遠存在。也就是說數(shù)據(jù)分析需要有更多的包容性和靈活性。在對數(shù)據(jù)分析工具上面,不能死咬一條路、一條腿走路,應(yīng)該是全方位發(fā)展,思邁特軟件做了很多的功能創(chuàng)新。

第三個是數(shù)據(jù)分析的文化,到底數(shù)據(jù)分析在企業(yè)里面有什么樣的價值,或者怎么提高它整體的效率等都存在問題。如果鼓勵所有人去做自助分析,就好比鼓勵所有人去開私家車,整體的道路資源、停車資源就變得非常緊張。

馬云與徐晶的觀點相似,其認為BI的瓶頸有兩點,一是數(shù)據(jù)管理的能力,大量的數(shù)據(jù)如何有統(tǒng)一的標準,怎么保證數(shù)據(jù)的一致性?如何有效的組織,然后讓分析師和業(yè)務(wù)人員能夠理解數(shù)據(jù),或者是需要解決一個問題的時候,從哪些數(shù)據(jù)可以得到相關(guān)的數(shù)據(jù)做分析?二是分析平臺的能力和應(yīng)用性,即在分析的過程中,平臺能給人帶來的便捷性也很重要,智能化方向就是在擴展這方面的能力。

“此外,采用率低是因為以前由IT決定采購,使用者并未有任何體驗。未來我們堅定的走‘人人都是數(shù)據(jù)分析師’路線,讓業(yè)務(wù)人員自助分析,業(yè)務(wù)驅(qū)動使用,這樣就能提高采用率。所以在落地的過程中要去降低門檻,讓業(yè)務(wù)人員能夠輕松地上手。”馬云說道。

“中國企業(yè)需要的是提供一攬子交鑰匙的服務(wù),涉及到產(chǎn)品能力、交付能力,甚至培訓客戶把產(chǎn)品真正用起來的能力,綜合到一起才能讓客戶滿意。我們通過不斷的服務(wù)企業(yè)獲取市場上客戶的需求,找到共同點再抽取,在產(chǎn)品的非標上做演變,爭取把產(chǎn)品豐富起來?!庇篮榭萍几笨偛檬⒄f道。

面對諸多挑戰(zhàn),BI與AI的結(jié)合正在為企業(yè)打開一片新天地。

一是增強分析將是 BI 技術(shù)的主要發(fā)展方向,其中又以自然語言相關(guān)技術(shù)為主,考慮到滯后期的存在,預測國內(nèi) BI 市場將在 2025 年左右出現(xiàn)明顯的增強分析需求。企業(yè)對數(shù)據(jù)挖掘技術(shù)的需求開始呈上升趨勢。

當前在中國,AI與BI僅存在極小的重合部分,隨著AI技術(shù)和BI系統(tǒng)的不斷成熟,AI在BI中的應(yīng)用將會越來越多,二者重合的部分也越來越多,但是因為它們存在本質(zhì)上的區(qū)別,因此不會完全重合。

二是加強數(shù)據(jù)實時處理能力也是未來BI需要進一步加強的地方。BI分析大部分建立在離線分析的基礎(chǔ)上,將分析的數(shù)據(jù)以定期更新的方式導入數(shù)據(jù)倉庫,分析結(jié)果會有滯后性。

馬云表示,過去BI更多的是依賴人的經(jīng)驗和總結(jié)完成業(yè)務(wù)的分析。隨著技術(shù)的進步,它可以利用自然語言等實現(xiàn)智能的問答,讓BI直接幫員工關(guān)聯(lián)和分析業(yè)務(wù)間的邏輯,然后把圖表畫出來,隨著數(shù)據(jù)的不斷增多,預測準確度也能逐漸地提升,對業(yè)務(wù)的預測分析能力也將增強。未來的BI產(chǎn)品預計在性能上能滿足用戶在幾十億量級的數(shù)據(jù)下實現(xiàn)數(shù)據(jù)的動態(tài)查詢和分析。

經(jīng)過十多年的發(fā)展,國內(nèi)BI市場經(jīng)歷了傳統(tǒng)BI、敏捷BI,預計在2025年左右將開始邁入智能化階段,到2030年,BI的智能化也將進一步擴大。

本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人。

評論

暫無評論哦,快來評價一下吧!

下載界面新聞

微信公眾號

微博

一邊高速奔跑,一邊屢遭詬病,BI行業(yè)何去何從?

BI行業(yè)的現(xiàn)狀到底什么樣子?

文|第一新聲 不做閑魚

編輯|也行

商業(yè)智能(BI)賽道經(jīng)歷了從國外廠商到國內(nèi)廠商的遷移,也正經(jīng)歷從傳統(tǒng)時代向智能時代的變革。

近期,市場上有人闡述了BI行業(yè)停滯不前的窘境以及數(shù)據(jù)分析工具市場的現(xiàn)狀。并且有許多讀者留下了共鳴的討論,其中一些評論者認為:商業(yè)智能(BI)系統(tǒng)的推出或部署過于頻繁,卻從最終用戶那里得到不冷不熱的反應(yīng),長期以來飽受采用率低下之苦。

目前,BI行業(yè)的現(xiàn)狀到底什么樣子?真的是停滯不前嗎?未來BI的道路該如何發(fā)展?第一新聲帶著這些疑問,與國內(nèi)兩家BI頭部企業(yè)進行了交流,看看他們是如何解釋的?

一、BI仍是剛需,未來5年增長率17.9%

BI即Business Intelligence,中文稱商業(yè)智能或商業(yè)智慧。1996年,Gartner正式將商業(yè)智能定義為:一類由數(shù)據(jù)倉庫(或數(shù)據(jù)集市)、查詢報表、數(shù)據(jù)分析、數(shù)據(jù)挖掘、數(shù)據(jù)備份和恢復等部分組成的、以幫助企業(yè)決策為目的的技術(shù)及其應(yīng)用。

BI的核心技術(shù)主要包括數(shù)據(jù)存儲、數(shù)據(jù)ETL、數(shù)據(jù)分析、數(shù)據(jù)挖掘,以及數(shù)據(jù)可視化分析。隨著數(shù)據(jù)量的激增和應(yīng)用場景的復雜化,諸如Hadoop和Hive等大數(shù)據(jù)技術(shù)的出現(xiàn)很好地彌補了BI處理大數(shù)據(jù)的能力。

從發(fā)展階段來看,2013年以前屬于傳統(tǒng)BI,該階段的產(chǎn)品以IT為主導,在大數(shù)據(jù)量的處理上擁有較好的性能和穩(wěn)定性,但是數(shù)據(jù)分析的能力和靈活性比較差。

2013年至今,自助型BI高速發(fā)展期,傳統(tǒng)BI逐漸衰退。這是由于IT驅(qū)動向業(yè)務(wù)驅(qū)動的轉(zhuǎn)變讓敏捷型/自主型BI產(chǎn)品出現(xiàn),使得采購成本低、項目周期短,

值得注意的是,2013年大數(shù)據(jù)概念在國內(nèi)開始普及,國內(nèi)BI市場進入萌芽階段。

國內(nèi)大部分BI廠商都是在2013年前后成立,或拿到融資、或市場份額翻倍增長。此外,國外的老牌BI產(chǎn)品從這個階段開始市場份額逐步下滑,新型的國外BI產(chǎn)品例如Tableau、Qlik 等開始在國內(nèi)快速布局,微軟也推出Power View。

要知道,早年間以Business Objects、Cognos、BIEE、Micro Strategy為首的四大品牌近乎統(tǒng)領(lǐng)了全球的BI市場。

隨著我國大數(shù)據(jù)產(chǎn)業(yè)迅速發(fā)展,政府出臺各項扶持政策,大量創(chuàng)新企業(yè)迎來發(fā)展機遇,國產(chǎn)BI也嶄露頭角。同時,BI行業(yè)的演進出現(xiàn)兩個趨勢,從IT到業(yè)務(wù),從報表到?jīng)Q策。

從企業(yè)類型來看,國內(nèi)市面上從事BI的企業(yè)分為兩種,一是獨立廠商,以帆軟、思邁特、永洪科技等為代表。他們的產(chǎn)品歷經(jīng)市場和客戶檢驗,客戶觸點廣泛,競爭實力不容小覷。

二是互聯(lián)網(wǎng)大廠,例如阿里云基于阿里電商生態(tài)打造了Quick BI 數(shù)據(jù)可視化分析平臺,對接各類云上數(shù)據(jù)庫和自建數(shù)據(jù)庫;騰訊基于微信社交生態(tài),推出騰訊有數(shù),幫助微信內(nèi)平臺進行系統(tǒng)性的數(shù)據(jù)分析;百度則基于百度智能云,打造數(shù)據(jù)可視化Sugar BI 平臺;網(wǎng)易也于2017年推出了網(wǎng)易有數(shù)。脫胎于內(nèi)部復雜業(yè)務(wù)的互聯(lián)網(wǎng)大廠,具有更為明顯的資金供給、生態(tài)搭建、人才培養(yǎng)等方面的優(yōu)勢。

從市場增速來看,發(fā)展至今,我國已進入BI及DA(數(shù)據(jù)分析)領(lǐng)域的第一方陣,并成為發(fā)展最快的國家之一。

IDC數(shù)據(jù)顯示,2020年中國商業(yè)智能軟件市場規(guī)模為5.8億美元,同比增長17.1%。2021年中國商業(yè)智能軟件市場增速將快速恢復,市場規(guī)模預計達到7.0億美元,同比增長恢復到21%。到2025年,中國商業(yè)智能軟件市場規(guī)模將達到13.3億美元,未來5年整體市場年復合增長率(CAGR)為17.9%。

“早期僅有金融、電信領(lǐng)域?qū)I有必要的需求,近20年的時間,各行各業(yè)對于數(shù)據(jù)的依賴度越來越高,現(xiàn)在廣泛的對BI有了需求,雖然BI市場在所有的技術(shù)領(lǐng)域里不算很大的蛋糕,但增長率確實非???,比GDP的增長率高了好幾倍,說明BI市場很有活力?!彼歼~特軟件副總裁徐晶在參加第一新聲舉辦的峰會時說道。

觀遠數(shù)據(jù)曾接受媒體采訪時表示,中國數(shù)據(jù)分析與商業(yè)智能的市場才剛剛開始,數(shù)字化轉(zhuǎn)型是未來十年中國經(jīng)濟的最大主題,而BI是其中最確定的剛需之一。未來10年,國內(nèi)會有現(xiàn)在50-100倍的用戶活躍的使用BI與數(shù)據(jù)分析,在企業(yè)運營與決策中獲得領(lǐng)先優(yōu)勢。

二、商業(yè)模式之選:產(chǎn)品/SaaS模式VS服務(wù)模式

TO B企業(yè)的商業(yè)模式總會面臨兩個選擇,到底是產(chǎn)品/SaaS模式還是服務(wù)模式,BI行業(yè)也不例外。

一是產(chǎn)品/SaaS模式,是將BI產(chǎn)品或者SaaS交付給客戶,并由客戶自行實施。

Tableau是該模式的典型代表,其主要以Tableau Desktop和Server版本為主,同時也提供嵌入式開發(fā)和SaaS服務(wù)。除咨詢服務(wù)外,Tableau的使用主要由業(yè)務(wù)人員根據(jù)實際需要自行完成。此外,MicroStrategy和大部分敏捷BI廠商及SaaS服務(wù)提供商都屬于該模式。

產(chǎn)品/SaaS模式提供給客戶靈活敏捷的BI產(chǎn)品,客戶能夠及時應(yīng)對業(yè)務(wù)變化的需要,但是單一的產(chǎn)品通常難以滿足客戶業(yè)務(wù)定制化的需要。

二是服務(wù)模式,以IT服務(wù)或者業(yè)務(wù)服務(wù)的方式為客戶提供基于BI的整體解決方案。另外,服務(wù)模式又包括IT服務(wù)型和業(yè)務(wù)服務(wù)型兩種。

提供IT服務(wù)模式的企業(yè)主要以O(shè)racle、SAP、IBM、SAS等傳統(tǒng)BI企業(yè)為主。這類企業(yè)主要以搭建BI信息系統(tǒng)為主,但在搭建數(shù)據(jù)倉庫過程中需要與業(yè)務(wù)人員進行充分配合,涉及大量業(yè)務(wù)咨詢與梳理過程。傳統(tǒng)BI廠商都建立有自身的BI實施方法論。以SAPBW為例,其實施過程大概分為項目計劃和準備、設(shè)計階段、開發(fā)階段、測試和部署階段以及系統(tǒng)上線階段等。

IT服務(wù)模式雖然充分結(jié)合的業(yè)務(wù)需求和技術(shù)實現(xiàn),但其主要以傳統(tǒng)BI流程為主,通常涉及多個部門的協(xié)調(diào)配合,同時其高昂的部署成本難以靈活的適應(yīng)現(xiàn)代企業(yè)的需要。

業(yè)務(wù)服務(wù)模式基于一站式大數(shù)據(jù)分析平臺構(gòu)建敏捷型BI產(chǎn)品,并以服務(wù)的方式支撐企業(yè)的業(yè)務(wù)分析需求。業(yè)務(wù)服務(wù)型廠商既要具備建立數(shù)據(jù)湖的能力,而不僅僅是建立數(shù)據(jù)倉庫,以便數(shù)據(jù)整合;通常以SaaS方式提供多樣化的服務(wù)。

一位投資人告訴第一新聲,如果不是SaaS產(chǎn)品,未來企業(yè)在獲客成本以及定制化成本可能會比較高,存在一定的風險。

徐晶表示:“我們自己走的路線是從大型客戶的服務(wù)做起,慢慢地把它變成產(chǎn)品、品牌。至于企業(yè)選擇什么模式,要從兩方面來看,一是面對競爭激烈的市場,客戶的需求經(jīng)常變化,所以要求BI系統(tǒng)有極高的適應(yīng)性和靈活性。我認為在中國,標準化的SaaS產(chǎn)品對大型客戶是不行的,還是以服務(wù)為主。但也希望盡量產(chǎn)品化,以功能代替服務(wù),降低交付成本。二是純標準化產(chǎn)品也有未來,例如在一些新興的小微企業(yè),或者主動擁抱接云端SaaS服務(wù)的企業(yè)。這種情況下有標準化產(chǎn)品存在的空間?!?/p>

“我們的產(chǎn)品分為SaaS和私有部署兩種模式,主要取決于客戶是否愿意把數(shù)據(jù)存在公有云上。我明顯感覺到未來的兩年,SaaS模式的使用量將慢慢增長?!庇篮榭萍悸?lián)席總裁馬云說道。

三、一邊高速奔跑,一邊屢遭詬?。?/h4>

BI行業(yè)發(fā)展二十多年,現(xiàn)狀卻是一邊是市場和廠商高速奔跑,一邊是問題諸多、屢遭詬病。

尤其是傳統(tǒng)式 BI 存在諸多問題。一是開發(fā)效率低下,傳統(tǒng)BI的報表制作是由業(yè)務(wù)部門提交到IT部門,IT人員根據(jù)分析需求進行建模,業(yè)務(wù)人員查看分析結(jié)果報表,流程繁瑣冗長,難以應(yīng)對復雜多變的業(yè)務(wù)需求。二是分析不靈活,制作出的報表是相對靜態(tài)的,僅能查看結(jié)果,不能實現(xiàn)靈活交互分析。三是開發(fā)部署周期長,BI項目部署開發(fā)周期往往需要幾個月的開發(fā)時間,面對日新月異的商業(yè)環(huán)境,委實不夠“敏捷”。

文章一開始,就提到過有人表示BI行業(yè)停滯不前,其中一個典型問題是,BI行業(yè)存在“玩具賣家問題”。銷售玩具假定兒童是使用者 (用戶),但父母是預算持有者和決策者。與玩具銷售一樣,BI部署中的用戶和買家是兩個不同的角色。企業(yè)BI銷售流程主要是為買家(IT預算持有者)量身定制的,而不是為實際上每天都不得不使用產(chǎn)品的非技術(shù)人員定制的。結(jié)果,BI平臺充斥著半生不熟、花里胡哨的無用功能,在組織購買平臺后沒有人實際使用這些功能,這也導致采用率低。

確實如此,目前在企業(yè)中負責BI工作的多為專業(yè)分析師、IT運維等職能人員,角色屬性決定了他們無法對于決策的業(yè)務(wù)結(jié)果負責,割裂了分析與執(zhí)行,決策和結(jié)果。理想的模式應(yīng)該是讓業(yè)務(wù)人員自主完成分析工作,和他們的主觀判斷結(jié)合,形成最優(yōu)的解決路徑,并由他們對結(jié)果負責。

于是,自助式 BI 應(yīng)運而生,自助式 BI 面向業(yè)務(wù)人員,追求業(yè)務(wù)人員與 IT 人員的高效配合。國外產(chǎn)品主要有Power BI、Tableau、Qlikview,國內(nèi)產(chǎn)品有帆軟、永洪科技、觀遠數(shù)據(jù)等。

在思邁特軟件副總裁徐晶看來,無論是傳統(tǒng)開發(fā)式BI還有自助式BI,在企業(yè)應(yīng)用時均面臨三大挑戰(zhàn)。

第一是數(shù)據(jù)質(zhì)量或數(shù)據(jù)管理的問題。

這么多年沒有一種解決方案能把企業(yè)的數(shù)據(jù)治理清楚或者管理到位,每個企業(yè)對數(shù)據(jù)的認知不到位,一開始就沒有規(guī)劃好數(shù)據(jù)標準和指標體系,都是先做業(yè)務(wù),再逐步優(yōu)化流程,再產(chǎn)生數(shù)據(jù),然后不斷改變業(yè)務(wù),調(diào)整流程,積累了各種各樣的數(shù)據(jù),而且各部門數(shù)據(jù)口徑不一致,連最基礎(chǔ)的數(shù)據(jù)標準都無法統(tǒng)一,那數(shù)據(jù)分析也將成為“精確的錯誤”,無法真正發(fā)揮出數(shù)據(jù)價值。

第二是數(shù)據(jù)分析的工具,即BI本身也是一個挑戰(zhàn),如何讓業(yè)務(wù)員真的用起來不是一個簡單的可視化解決方案,它在實際應(yīng)用中會出現(xiàn)很多的問題。

數(shù)據(jù)分析實際上是一個立體的需求,不是一個簡單的功能需求,就好像每個人都要去參與城市交通,而交通工具是一種解決交通需求的工具體系,比如有自行車、公交車、出租車、私家車、地鐵等各種各樣的方案。數(shù)據(jù)分析在企業(yè)里面也是一樣,沒有一個行業(yè)會用一種的方式去分析數(shù)據(jù),也沒有一個企業(yè)的所有人會愿意用同一種方式分析數(shù)據(jù)。

所以無論BI怎么發(fā)展,Excel這種數(shù)據(jù)分析方式會永遠存在。也就是說數(shù)據(jù)分析需要有更多的包容性和靈活性。在對數(shù)據(jù)分析工具上面,不能死咬一條路、一條腿走路,應(yīng)該是全方位發(fā)展,思邁特軟件做了很多的功能創(chuàng)新。

第三個是數(shù)據(jù)分析的文化,到底數(shù)據(jù)分析在企業(yè)里面有什么樣的價值,或者怎么提高它整體的效率等都存在問題。如果鼓勵所有人去做自助分析,就好比鼓勵所有人去開私家車,整體的道路資源、停車資源就變得非常緊張。

馬云與徐晶的觀點相似,其認為BI的瓶頸有兩點,一是數(shù)據(jù)管理的能力,大量的數(shù)據(jù)如何有統(tǒng)一的標準,怎么保證數(shù)據(jù)的一致性?如何有效的組織,然后讓分析師和業(yè)務(wù)人員能夠理解數(shù)據(jù),或者是需要解決一個問題的時候,從哪些數(shù)據(jù)可以得到相關(guān)的數(shù)據(jù)做分析?二是分析平臺的能力和應(yīng)用性,即在分析的過程中,平臺能給人帶來的便捷性也很重要,智能化方向就是在擴展這方面的能力。

“此外,采用率低是因為以前由IT決定采購,使用者并未有任何體驗。未來我們堅定的走‘人人都是數(shù)據(jù)分析師’路線,讓業(yè)務(wù)人員自助分析,業(yè)務(wù)驅(qū)動使用,這樣就能提高采用率。所以在落地的過程中要去降低門檻,讓業(yè)務(wù)人員能夠輕松地上手?!瘪R云說道。

“中國企業(yè)需要的是提供一攬子交鑰匙的服務(wù),涉及到產(chǎn)品能力、交付能力,甚至培訓客戶把產(chǎn)品真正用起來的能力,綜合到一起才能讓客戶滿意。我們通過不斷的服務(wù)企業(yè)獲取市場上客戶的需求,找到共同點再抽取,在產(chǎn)品的非標上做演變,爭取把產(chǎn)品豐富起來。”永洪科技副總裁石虎說道。

面對諸多挑戰(zhàn),BI與AI的結(jié)合正在為企業(yè)打開一片新天地。

一是增強分析將是 BI 技術(shù)的主要發(fā)展方向,其中又以自然語言相關(guān)技術(shù)為主,考慮到滯后期的存在,預測國內(nèi) BI 市場將在 2025 年左右出現(xiàn)明顯的增強分析需求。企業(yè)對數(shù)據(jù)挖掘技術(shù)的需求開始呈上升趨勢。

當前在中國,AI與BI僅存在極小的重合部分,隨著AI技術(shù)和BI系統(tǒng)的不斷成熟,AI在BI中的應(yīng)用將會越來越多,二者重合的部分也越來越多,但是因為它們存在本質(zhì)上的區(qū)別,因此不會完全重合。

二是加強數(shù)據(jù)實時處理能力也是未來BI需要進一步加強的地方。BI分析大部分建立在離線分析的基礎(chǔ)上,將分析的數(shù)據(jù)以定期更新的方式導入數(shù)據(jù)倉庫,分析結(jié)果會有滯后性。

馬云表示,過去BI更多的是依賴人的經(jīng)驗和總結(jié)完成業(yè)務(wù)的分析。隨著技術(shù)的進步,它可以利用自然語言等實現(xiàn)智能的問答,讓BI直接幫員工關(guān)聯(lián)和分析業(yè)務(wù)間的邏輯,然后把圖表畫出來,隨著數(shù)據(jù)的不斷增多,預測準確度也能逐漸地提升,對業(yè)務(wù)的預測分析能力也將增強。未來的BI產(chǎn)品預計在性能上能滿足用戶在幾十億量級的數(shù)據(jù)下實現(xiàn)數(shù)據(jù)的動態(tài)查詢和分析。

經(jīng)過十多年的發(fā)展,國內(nèi)BI市場經(jīng)歷了傳統(tǒng)BI、敏捷BI,預計在2025年左右將開始邁入智能化階段,到2030年,BI的智能化也將進一步擴大。

本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人。