文|動脈網(wǎng)
美東時間5月8日,谷歌DeepMind與 Isomorphic Labs(DeepMind 創(chuàng)始人創(chuàng)立)宣布推出新一代AI生物分子結(jié)構(gòu)模型AlphaFlod 3。
據(jù)悉,新的模型不僅局限于蛋白質(zhì)結(jié)構(gòu)的預(yù)測,它還能夠預(yù)測DNA、RNA、配體等生命分子的結(jié)構(gòu)和相互作用,甚至可以預(yù)測翻譯后修飾(PTM)和離子對相應(yīng)分子系統(tǒng)結(jié)構(gòu)的影響。研究人員僅需輸入一個生物分子復合體的基本描述,幾秒后便能收獲該復合體3D結(jié)構(gòu)的準確預(yù)測。
被《Nature 》收錄的《Accurate structure prediction of biomolecular interactions with AlphaFlod?3》 對模型的能力進行了詳細論證。
據(jù)論文數(shù)據(jù)顯示:與現(xiàn)有的預(yù)測方法相比,AlphaFlod 3無需輸入任何結(jié)構(gòu)信息的情況下,其準確性已比PoseBusters基準上的最佳傳統(tǒng)方法高出50%(一些特殊場景可達100%),理論上優(yōu)于現(xiàn)有的基于物理的生物分子結(jié)構(gòu)預(yù)測工具。
不過,任何工具的使用都不能脫離實際。經(jīng)歷數(shù)天測試,已有不少專家學者引入實際問題對AlphaFlod 3的能力評估。就目前測試結(jié)果而言,AlphaFlod 3確實充滿潛力,但還不足以“顛覆”這一領(lǐng)域。
全生命分子預(yù)測,AlphaFlod 3更接近AIDD了
與過往的AlphaFlod系列工具類似,AlphaFlod 3也采取了神經(jīng)網(wǎng)絡(luò)架構(gòu),并以蛋白質(zhì)數(shù)據(jù)庫(PDB)中的全球分子結(jié)構(gòu)數(shù)據(jù)為基礎(chǔ)進行訓練。不過,AlphaFlod 3的預(yù)測準度在大部分場景中都遠超前代產(chǎn)品,且在預(yù)測范疇上實現(xiàn)了大規(guī)模的擴充。
這些能力的升級來源于AlphaFlod 3新引入的主要組件,包括升級版的Evoformer模塊(現(xiàn)為Pairformer 模塊)、全新的Diffusion Network等。其中,Diffusion Network從點云通過概率擴散預(yù)測坐標,進而實現(xiàn)了更高的預(yù)測精度。
此外,一些模型上的創(chuàng)新也對AlphaFlod 3的預(yù)測結(jié)果進行了優(yōu)化。在手性分子等形態(tài)相似結(jié)構(gòu)上,算法常會發(fā)生預(yù)測錯誤。這類情況下,AlphaFlod 3采用了交叉蒸餾的方式,讓具備Transform模型的AlphaFlod 2先行預(yù)測,再把預(yù)測數(shù)據(jù)添加到 AlphaFlod 3 的訓練中,一定程度提升了預(yù)測的準確率。
論文展示了部分AlphaFlod 3的預(yù)測結(jié)果。例如對感冒病毒刺突蛋白( 藍色 )與抗體( 綠松石色 )和單糖( 黃色 )相互作用時的結(jié)構(gòu)預(yù)測,與真實結(jié)構(gòu)準確匹配( 灰色的)中,它與實驗室得到的結(jié)果幾近完全匹配(灰色部分)。
對蛋白質(zhì)和DNA結(jié)合的分子復合物(7R6R - DNA 結(jié)合蛋白)進行預(yù)測,預(yù)測模型也與實驗測定的真實分子結(jié)構(gòu)( 灰色 )完美匹配,且精度達到了遠超其他模型的原子級。
在生成預(yù)測結(jié)果后,AlphaFlod3 還會提供一個置信度分數(shù),評估該次預(yù)測結(jié)果的準確度,為研究人員提供參考。
論文展示的AlphaFlod3 的能力對于理解人類免疫反應(yīng)的各個方面和新抗體的設(shè)計至關(guān)重要。這一新的工具顯然可以通過幫助研究人員了解如何接近新的疾病靶點,進而開發(fā)新的方法來追求以前遙不可及的靶點,最終加速藥物設(shè)計并提高其成功率。
此外,論文提及的RNA的預(yù)測能力同樣具備極大的想象空間。
以往的藥物靶點大部分都是蛋白質(zhì)靶點,但實際上RNA會成為一個比較好的潛在靶點。通過阻斷RNA表達或阻斷RNA與蛋白質(zhì)形成復合物,從而阻斷蛋白質(zhì)形成功能,藥物的療效或許會比蛋白質(zhì)靶點表現(xiàn)更好。
但在過去的采用非AlphaFlod工具進行的RNA三維結(jié)構(gòu)預(yù)測中,絕大部分的預(yù)測誤差超過了10埃,與物理預(yù)測方式存在一定差距。理論上要實現(xiàn)RNA結(jié)構(gòu)計算相關(guān)的應(yīng)用,精度最好控制在2-3埃左右。
如果AlphaFlod 3能夠攻克RNA結(jié)果預(yù)測,使其預(yù)測結(jié)果達到跟蛋白質(zhì)預(yù)測差不多的水平,那么這一工具或能優(yōu)化mRNA的蛋白表達,優(yōu)化其穩(wěn)定性,加速針對RNA target的藥物設(shè)計,甚至加速將RNA本身作為新型藥物的藥物研發(fā)。
算法閉源,AlphaFlod 3或?qū)㈤_啟AI分子預(yù)測付費時代
在理想情況下,原先需要花大量時間精力和資金才能觀察到的現(xiàn)象,現(xiàn)在只需要在DeepMind的界面中輸入?yún)?shù),便能在數(shù)分鐘內(nèi)得到極高清晰度和準確度的生物大分子模型,甚至明確該大分子細胞系統(tǒng)內(nèi)部的生化過程,展現(xiàn)如何與抗體、核酸進行反應(yīng),因而能在行業(yè)之中引起轟動。
但在實際測試中,AlphaFlod 3的能力或許不如大家期待的那樣理想。
顏寧教授團隊在微博上表示,AlphaFlod針對一個糖蛋白的預(yù)測不如上一代版本?!斑@次的server版本我覺得是一個速度和準確度的平衡,正確率不是最好的。我現(xiàn)在手上有三個都是比較奇怪的蛋白,之前我自己搭的AF2 multimer可以在很低的ranking position找到一兩個正確的conformation,這次的server版本測試全軍覆沒。”
也有學者在試用AlphaFlod 3后發(fā)現(xiàn)DeepMind并沒有將文章中引以為傲的蛋白-小分子配體預(yù)測任務(wù)公開,用戶仍然不能自定義配體進行復合物結(jié)構(gòu)預(yù)測(aka對接)。
此外,AlphaFlod 3也因尚未開源在學界引起激烈討論。
目前,DeepMind僅為該模型發(fā)布了一個名為AlphaFlod Server 的公共接口,該接口對可以進行實驗的分子施加了限制,僅允許每位用戶每天進行10次預(yù)測,且不提供可能與藥物結(jié)合的蛋白質(zhì)結(jié)構(gòu)。
在實際操作中,研究人員為獲得最高精度,需要生成大量預(yù)測結(jié)構(gòu)并對其進行排名,特別是對于抗體-抗原復合物,預(yù)測質(zhì)量隨著模型種子的數(shù)量增加而顯著提高,因而對工具的篩選功能提出考量。畢竟制藥公司并不關(guān)心研究人員能找出多少小分子,也不關(guān)心提供的分子是自己生成,還是從數(shù)據(jù)庫里篩選,他們只在乎能否找到一個抑制蛋白質(zhì)的最合適的小分子。
但就AlphaFlod Server現(xiàn)階段可以提供的服務(wù)而言,研究人員很難借助這一工具實現(xiàn)期望中的價值。AlphaFlod 3的使用限制中明確指出預(yù)測結(jié)果不準商用,也不能用于對接和虛擬篩選,
業(yè)內(nèi)人士認為,AlphaFlod 3的開源至少會等到12月的CASP16結(jié)束后。但考慮到 Isomorphic Labs 參與了AlphaFlod 3的研發(fā)工作,DeepMInd這一次可能不會向?qū)W界開源它的開源推理代碼或可執(zhí)行文件,也不會開源算法和原理。畢竟,這些算法已經(jīng)成為 Isomorphic Labs 的核心資產(chǎn)。
今年1月,Isomorphic Labs宣布與禮來和諾華達成了兩項價值30億美元的藥物發(fā)現(xiàn)協(xié)議,合作涉及針對多種疾病相關(guān)蛋白和途徑的治療方法的發(fā)現(xiàn),正與AlphaFlod 3對抗原抗體復合體的預(yù)測能力、對蛋白配體復合體的預(yù)測能力、對蛋白核酸復合體的預(yù)測能力緊密相關(guān)。
如此來看,AlphaFlod 3的未來可能會像GPT一樣被包裝成一款商用軟件,面向不同的用戶推出不同的版本。譬如,預(yù)測結(jié)構(gòu)的排序可能會成為付費項目的一部分,需要研究人員有償使用。如今絕大多數(shù)研究人員已經(jīng)習慣了在論文之中附上AlphaFlod 2的預(yù)測結(jié)果,但隨著工具閉源,這一習慣或許也將逐漸改變。
不過,無論是開源還是閉源,是免費還是商用,我們都應(yīng)尊重DeepMind 與 Isomorphic Labs的選擇。畢竟,面對分子生物學理解、調(diào)節(jié)生物系統(tǒng)復雜的原子相互作用這一命題,AlphaFlod 3確實帶領(lǐng)行業(yè)向前邁出了一大步,有望實現(xiàn)在統(tǒng)一的框架內(nèi)準確預(yù)測各種生物分子系統(tǒng)的結(jié)構(gòu)。
因此,合理的商用或許能夠進一步為DeepMind與 Isomorphic Labs提供更多支持,推動整個行業(yè)更快進入分子生物學的下一個時代。